Search results
Results from the WOW.Com Content Network
The elongation and membrane targeting stages of eukaryotic translation. The ribosome is green and yellow, the tRNAs are dark-blue, and the other proteins involved are light-blue. Elongation depends on eukaryotic elongation factors. At the end of the initiation step, the mRNA is positioned so that the next codon can be translated during the ...
Overview of eukaryotic messenger RNA (mRNA) translation Translation of mRNA and ribosomal protein synthesis Initiation and elongation stages of translation involving RNA nucleobases, the ribosome, transfer RNA, and amino acids The three phases of translation: (1) in initiation, the small ribosomal subunit binds to the RNA strand and the initiator tRNA–amino acid complex binds to the start ...
Most common elongation factors in prokaryotes are EF-Tu, EF-Ts, EF-G. [1] Bacteria and eukaryotes use elongation factors that are largely homologous to each other, but with distinct structures and different research nomenclatures. [2] Elongation is the most rapid step in translation. [3]
Elongation of the polypeptide chain involves addition of amino acids to the carboxyl end of the growing chain. The growing protein exits the ribosome through the polypeptide exit tunnel in the large subunit. [10] Elongation starts when the fMet-tRNA enters the P site, causing a conformational change which opens the A site for the new aminoacyl ...
All steps in the transcription are subject to some degree of regulation. [1] Transcription initiation in particular is the primary level at which gene expression is regulated. Targeting the rate-limiting initial step is the most efficient in terms of energy costs for the cell.
The ribosomal P-site plays a vital role in all phases of translation. Initiation involves recognition of the start codon (AUG) by initiator tRNA in the P-site, elongation involves passage of many elongator tRNAs through the P site, termination involves hydrolysis of the mature polypeptide from tRNA bound to the P-site, and ribosome recycling involves release of deacylated tRNA.
Alterations in translation of mRNA into proteins rapidly modulates the proteome without changing upstream steps such as transcription, pre-mRNA splicing, and nuclear export. [1] The strict regulation of translation in both space and time is in part governed by cis-regulatory elements located in 5′ mRNA transcript leaders (TLs) and 3 ...
The eIF2 alpha subunit is characterized by an OB-fold domain and two beta strands. This subunit helps to regulate translation, as it becomes phosphorylated to inhibit protein synthesis. [2] The eIF4F complex supports the cap-dependent translation initiation process and is composed of the initiation factors eIF4A, eIF4E, and eIF4G.