Search results
Results from the WOW.Com Content Network
The alveoli are tiny air sacs in the lungs where gas exchange takes place. The mean number of alveoli in a human lung is 480 million. [11] When the diaphragm contracts, a negative pressure is generated in the thorax and air rushes in to fill the cavity. When that happens, these sacs fill with air, making the lung expand.
Therefore, the ventilation-perfusion ratio represents the volume of gas that enters the alveoli compared to the volume of blood that enters the alveoli per minute. The ideal V/Q ratio is 1, the most efficient state of pulmonary function when the amount of oxygen entering the lungs equals the amount of oxygen delivered to the body.
The process of breathing does not fill the alveoli with atmospheric air during each inhalation (about 350 ml per breath), but the inhaled air is carefully diluted and thoroughly mixed with a large volume of gas (about 2.5 liters in adult humans) known as the functional residual capacity which remains in the lungs after each exhalation, and ...
The efferent neural pathway then follows, with relevant signals transmitted back from the cerebral cortex and medulla via the vagus and superior laryngeal nerves to the glottis, external intercostals, diaphragm, and other major inspiratory and expiratory muscles. The mechanism of a cough is as follows:
Almost any type of lung tumor or lung cancer can compress the alveoli and reduce gas exchange capacity. In some cases the tumor will fill the alveoli. [33] Cavitary pneumonia is a process in which the alveoli are destroyed and produce a cavity. As the alveoli are destroyed, the surface area for gas exchange to occur becomes reduced.
Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.
Dead space reduces the amount of fresh breathing gas which reaches the alveoli during each breath. This reduces the oxygen available for gas exchange, and the amount of carbon dioxide that can be removed. The buildup of carbon dioxide is usually the more noticeable effect unless the breathing gas is hypoxic as occurs at high altitude.
Relaxing the diaphragm during expiration allows the lungs to recoil and regain the intrapleural pressure experienced previously at rest. Elastic recoil is inversely related to lung compliance . This phenomenon occurs because of the elastin in the elastic fibers in the connective tissue of the lungs, and because of the surface tension of the ...