Search results
Results from the WOW.Com Content Network
Bevel gears are most often mounted on shafts that are 90 degrees apart, but can be designed to work at other angles as well. [1] The pitch surface of bevel gears is a cone, known as a pitch cone. Bevel gears change the axis of rotation of rotational power delivery and are widely used in mechanical settings. Bevel gear on roller shutter door.
Outer cone distance in bevel gears is the distance from the apex of the pitch cone to the outer ends of the teeth. When not otherwise specified, the short term cone distance is understood to be outer cone distance. Mean cone distance in bevel gears is the distance from the apex of the pitch cone to the middle of the face width.
Milestones in the design or use of differentials include: 100 BCE–70 BCE: The Antikythera mechanism has been dated to this period. It was discovered in 1902 on a shipwreck by sponge divers, and modern research suggests that it used a differential gear to determine the angle between the ecliptic positions of the Sun and Moon, and thus the phase of the Moon.
Worm-and-gear sets are a simple and compact way to achieve a high torque, low speed gear ratio. For example, helical gears are normally limited to gear ratios of less than 10:1 while worm-and-gear sets vary from 10:1 to 500:1. [45] A disadvantage is the potential for considerable sliding action, leading to low efficiency. [46]
The gear ratios in transmission and final drive are important because different gear ratios will change the characteristics of a vehicle's performance. Valve timing gears on a Ford Taunus V4 engine — the small gear is on the crankshaft, the larger gear is on the camshaft. The crankshaft gear has 34 teeth, the camshaft gear has 68 teeth and ...
The shape of a hypoid gear is a revolved hyperboloid (that is, the pitch surface of the hypoid gear is a hyperbolic surface), whereas the shape of a spiral bevel gear is normally conical. The hypoid gear places the pinion off-axis to the crown wheel (ring gear) which allows the pinion to be larger in diameter and have more contact area.
Analysis assumes a common gear design modulus. The planetary gears (blue) turn in a ratio determined by the number of teeth in each gear. Here, the ratio is − + 27 / 18 , or − + 3 / 2 ; meaning that each planet gear turns at 3 / 2 the rate of the sun gear, in the opposite direction. An outer ring gear is not shown.
Meshing of two spur gears with involute external teeth. z 1 = 20, z 2 = 50, α = 20°, ξ 1 = ξ 2 = 0, ISO 53:1998. The lower (green) gear is the driving one. The line of contact, which is the locus of all teeth contact points, is shown in blue.