Search results
Results from the WOW.Com Content Network
A Bergman space is an example of a reproducing kernel Hilbert space, which is a Hilbert space of functions along with a kernel K(ζ, z) that verifies a reproducing property analogous to this one. The Hardy space H 2 ( D ) also admits a reproducing kernel, known as the Szegő kernel . [ 37 ]
where H(D) is the space of holomorphic functions in D. Then L 2, h ( D ) is a Hilbert space: it is a closed linear subspace of L 2 ( D ), and therefore complete in its own right. This follows from the fundamental estimate, that for a holomorphic square-integrable function ƒ in D
As such, quantum states form a ray in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than ray is very difficult to avoid. [5]
A rigged Hilbert space is a pair (H, Φ) with H a Hilbert space, Φ a dense subspace, such that Φ is given a topological vector space structure for which the inclusion map:, is continuous. [ 4 ] [ 5 ] Identifying H with its dual space H * , the adjoint to i is the map i ∗ : H = H ∗ → Φ ∗ . {\displaystyle i^{*}:H=H^{*}\to \Phi ^{*}.}
Let be an arbitrary set and a Hilbert space of real-valued functions on , equipped with pointwise addition and pointwise scalar multiplication.The evaluation functional over the Hilbert space of functions is a linear functional that evaluates each function at a point ,
The single point denoted in this space is represented by the set of functions () where and represents an index set. In quantum field theory , it is expected that the Hilbert space is also the L 2 {\displaystyle L^{2}} space on the configuration space of the field, which is infinite dimensional, with respect to some Borel measure naturally defined.
The first three functions in the sequence () = on [,].As converges weakly to =.. The Hilbert space [,] is the space of the square-integrable functions on the interval [,] equipped with the inner product defined by
The simplest example of a direct integral are the L 2 spaces associated to a (σ-finite) countably additive measure μ on a measurable space X. Somewhat more generally one can consider a separable Hilbert space H and the space of square-integrable H-valued functions (,).