Search results
Results from the WOW.Com Content Network
A NestedSampler is part of the Python toolbox BayesicFitting [9] for generic model fitting and evidence calculation. It is available on GitHub. An implementation in C++, named DIAMONDS, is on GitHub. A highly modular Python parallel example for statistical physics and condensed matter physics uses is on GitHub.
Bayesian hierarchical modelling is a statistical model written in multiple levels (hierarchical form) that estimates the parameters of the posterior distribution using the Bayesian method. [1] The sub-models combine to form the hierarchical model, and Bayes' theorem is used to integrate them with the observed data and account for all the ...
Just another Gibbs sampler (JAGS) is a program for simulation from Bayesian hierarchical models using Markov chain Monte Carlo (MCMC), developed by Martyn Plummer. JAGS has been employed for statistical work in many fields, for example ecology, management, and genetics.
PyMC (formerly known as PyMC3) is a probabilistic programming language written in Python. It can be used for Bayesian statistical modeling and probabilistic machine learning. It can be used for Bayesian statistical modeling and probabilistic machine learning.
As a result, we obtain a posterior distribution of γ (variable inclusion in the model), β (regression coefficient values) and the corresponding prediction of y. The model got its name (spike-and-slab) due to the shape of the two prior distributions. The "spike" is the probability of a particular coefficient in the model to be zero.
In statistics and machine learning, the hierarchical Dirichlet process (HDP) is a nonparametric Bayesian approach to clustering grouped data. [1] [2] It uses a Dirichlet process for each group of data, with the Dirichlet processes for all groups sharing a base distribution which is itself drawn from a Dirichlet process. This method allows ...
The deviance information criterion (DIC) is a hierarchical modeling generalization of the Akaike information criterion (AIC). It is particularly useful in Bayesian model selection problems where the posterior distributions of the models have been obtained by Markov chain Monte Carlo (MCMC) simulation.
This type model can be estimated with Eviews, Stata, Python [8] or R [9] Statistical Packages. Recent research has shown that Bayesian vector autoregression is an appropriate tool for modelling large data sets. [10]