Search results
Results from the WOW.Com Content Network
In quantum optics, superradiance is a phenomenon that occurs when a group of N emitters, such as excited atoms, interact with a common light field. If the wavelength of the light is much greater than the separation of the emitters, [2] then the emitters interact with the light in a collective and coherent fashion. [3]
This effect of superradiance [23] has been demonstrated by monitoring the decay of the exciton polarization in suitably arranged semiconductor multiple quantum wells. Due to superradiance introduced by the coherent radiative coupling among the quantum wells, the decay rate increases proportional to the number of quantum wells and is thus ...
Dicke superradiance is a collective phenomenon in which many two-level systems emit photons coherently in free space. [ 2 ] [ 18 ] It occurs if the two-level systems are initially prepared in their excited state and placed at a distance much smaller than the relevant photon's wavelength.
Despite the original model of the superradiance the quantum electromagnetic field is totally neglected here. The oscillators may be assumed to be placed for example on the cubic lattice with the lattice constant in the analogy to the crystal system of the condensed matter. The worse scenario of the defect of the absence of the two out-of-the ...
One important feature of a FROG measurement is that many more data points are collected than are strictly necessary to find the pulse electric field. For example, say that the measured trace consists of 128 points in the delay direction and 128 points in the frequency direction. There are 128×128 total points in the trace.
A superradiant laser is a laser that does not rely on a large population of photons within the laser cavity to maintain coherence. [1] [2]Rather than relying on photons to store phase coherence, it relies on collective effects in an atomic medium to store coherence.
An example of light that exhibits super-Poissonian statistics is thermal light. The intensity of thermal light fluctuates randomly and the fluctuations give rise to super-Poissonian statistics, as shown below by calculating the distribution of the intensity fluctuations. [2]
It was introduced by Eugene Wigner in 1932 [1] to study quantum corrections to classical statistical mechanics. The goal was to link the wavefunction that appears in Schrödinger's equation to a probability distribution in phase space. It is a generating function for all spatial autocorrelation functions of a given quantum-mechanical ...