Search results
Results from the WOW.Com Content Network
NSA Suite B Cryptography was a set of cryptographic algorithms promulgated by the National Security Agency as part of its Cryptographic Modernization Program. It was to serve as an interoperable cryptographic base for both unclassified information and most classified information. Suite B was announced on 16 February 2005.
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.
The goal of the Document Based Question was for students to be "less concerned with the recall of previously learned information" and more engaged in deeper historical inquiry. Hayes, in particular, hoped students would "become junior historians and play the role of historians for that hour" as they engaged in the DBQ. [1]
SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. [3] [4] They are built using the Merkle–Damgård construction, from a one-way compression function itself built using the Davies–Meyer structure from a specialized block cipher.
SHA-0: 1993 NSA: SHA-0: SHA-1: 1995 SHA-0: Specification: SHA-256 SHA-384 SHA-512: 2002 SHA-224: 2004 SHA-3 (Keccak) 2008 Guido Bertoni Joan Daemen Michaël Peeters Gilles Van Assche: RadioGatún: Website Specification: Streebog: 2012 FSB, InfoTeCS JSC RFC 6986: Tiger: 1995 Ross Anderson Eli Biham: Website Specification: Whirlpool: 2004 Vincent ...
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
The modular exponentiation in computing is the most computationally expensive part of the signing operation, but it may be computed before the message is known. Calculating the modular inverse k − 1 mod q {\displaystyle k^{-1}{\bmod {\,}}q} is the second most expensive part, and it may also be computed before the message is known.
Replacing SHA-1 is urgent where it is used for digital signatures. All major web browser vendors ceased acceptance of SHA-1 SSL certificates in 2017. [15] [9] [4] In February 2017, CWI Amsterdam and Google announced they had performed a collision attack against SHA-1, publishing two dissimilar PDF files which produced the same SHA-1 hash.