Search results
Results from the WOW.Com Content Network
A pair of angles opposite each other, formed by two intersecting straight lines that form an "X"-like shape, are called vertical angles or opposite angles or vertically opposite angles. They are abbreviated as vert. opp. ∠s. [13]
(The angle above E is vertically opposite angle ∠BEC.) This means that a ray of light that enters the parabola and arrives at E travelling parallel to the axis of symmetry will be reflected by the line BE so it travels along the line EF , as shown in red in the diagram (assuming that the lines can somehow reflect light).
The midpoint theorem, midsegment theorem, or midline theorem states that if the midpoints of two sides of a triangle are connected, then the resulting line segment will be parallel to the third side and have half of its length.
Alternate angles are the four pairs of angles that: have distinct vertex points, lie on opposite sides of the transversal and; both angles are interior or both angles are exterior. If the two angles of one pair are congruent (equal in measure), then the angles of each of the other pairs are also congruent.
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
(This is the angle α opposite the "rise" side of a triangle with a right angle between vertical rise and horizontal run.) as a percentage, the formula for which is which is equivalent to the tangent of the angle of inclination times 100. In Europe and the U.S. percentage "grade" is the most commonly used figure for describing slopes.
Changing orientation of a rigid body is the same as rotating the axes of a reference frame attached to it.. In geometry, the orientation, attitude, bearing, direction, or angular position of an object – such as a line, plane or rigid body – is part of the description of how it is placed in the space it occupies. [1]
Normal-section azimuth is the angle measured at our viewpoint by a theodolite whose axis is perpendicular to the surface of the spheroid; geodetic azimuth (or geodesic azimuth) is the angle between north and the ellipsoidal geodesic (the shortest path on the surface of the spheroid from our viewpoint to Point 2).