Search results
Results from the WOW.Com Content Network
Tungsten carbide (chemical formula: WC) is a chemical compound (specifically, a carbide) containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering [7] for use in industrial machinery, engineering facilities, [8] molding blocks, [9] cutting tools, chisels, abrasives, armor ...
This page was last edited on 16 November 2024, at 12:16 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
The Brinell hardness is designated by the most commonly used test standards (ASTM E10-14 [2] and ISO 6506–1:2005) as HBW (H from hardness, B from brinell and W from the material of the indenter, tungsten (wolfram) carbide). In former standards HB or HBS were used to refer to measurements made with steel indenters.
Tungsten carbide is an industrially ... modulus to the Vickers or Brinell hardness. ... by the formation of a dull B 2 O 3 coating on the surface as boron is leached ...
Widely used to test hardness of all kinds of metal materials (steel, nonferrous metals, tinsel, cemented carbide, sheet metal, etc.); surface layer / coating (Carburization, nitriding, decarburization layer, surface hardening layer, galvanized coating, etc.). [6] Brinell hardness test (HB) BHN and HBW are widely used [7]
The Brinell hardness test, ... for soft coatings: 100: ... the letter "W" is used to indicate a tungsten carbide ball was used, and the letter "S" indicates the use ...
A variety of hardness-testing methods are available, including the Vickers, Brinell, Rockwell, Meyer and Leeb tests. Although it is impossible in many cases to give an exact conversion, it is possible to give an approximate material-specific comparison table for steels .
The first cemented carbide developed was tungsten carbide (introduced in 1927) which uses tungsten carbide particles held together by a cobalt metal binder. Since then, other cemented carbides have been developed, such as titanium carbide, which is better suited for cutting steel, and tantalum carbide, which is tougher than tungsten carbide. [1]