Search results
Results from the WOW.Com Content Network
In the first step, the reaction is only run to 10% to 15% conversion to prevent the second addition of a chlorine atom to the desired chlorobenzene. Despite this, the overall selectivity of the reaction is 70% to 85%. This second addition can be reversed using the Hooker modification, though it is also costly.
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C 6 H 5 Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals. [6]
Chlorobenzenes are a group of aryl chlorides/halobenzenes consisting of one or more chlorine atoms as substituents on a benzene core. They have the formula C 6 H 6–n Cl n, where n = 1–6 is the number of chlorine atoms. Depending on the number of chlorine substituents, there may be several constitutional isomers possible. Monochlorobenzene ...
Addition of Cl 2 destroys the aromaticity of the benzene ring, and the addition of two more Cl 2 molecules is rapid compared to the first. Hence, only thrice-dichlorinated product can be isolated from this reaction. Radical addition: C 6 H 6 + 3Cl 2 → C 6 H 6 Cl 6. Hexachlorocyclohexane isomers with more than one chlorine atom per carbon are:
Chemical reactions are determined by the laws of thermodynamics. Reactions can proceed by themselves if they are exergonic, that is if they release free energy. The associated free energy change of the reaction is composed of the changes of two different thermodynamic quantities, enthalpy and entropy: [17]
A substitution reaction (also known as single displacement reaction or single substitution reaction) is a chemical reaction during which one functional group in a chemical compound is replaced by another functional group. [1] Substitution reactions are of prime importance in organic chemistry.
Two free radicals (chlorine and chlorine, chlorine and methyl, or methyl and methyl) combine: Methane chlorination: termination The last possibility generates in an impurity in the final mixture (notably, an organic molecule with a longer carbon chain than the reactants). The net reaction is: Methane chlorination overall reaction
Benzene can be readily converted to chlorobenzene by nucleophilic aromatic substitution via a benzyne intermediate. [1] Chlorobenzene is treated with aqueous sodium hydroxide at 350 °C and 300 bar or molten sodium hydroxide at 350 °C to convert it to sodium phenoxide, which yields phenol upon acidification. [2]