Search results
Results from the WOW.Com Content Network
This formula assumes that any hub gear is in direct drive. A further factor is needed for other gears (many online gear calculators have these factors built in for common hub gears). For simplicity, 'gear inches' is normally rounded to the nearest whole number. For example, suppose the drive wheel is actually 26 inches in diameter.
A Rohloff Speedhub hub gear A Shimano XT rear derailleur on a mountain bike A bicycle gearbox with chain tensioner. Bicycle gearing is the aspect of a bicycle drivetrain that determines the relation between the cadence, the rate at which the rider pedals, and the rate at which the drive wheel turns.
Total face width is the actual dimension of a gear blank including the portion that exceeds the effective face width, or as in double helical gears where the total face width includes any distance or gap separating right hand and left hand helices. For a cylindrical gear, effective face width is the portion that contacts the mating teeth.
Two intermeshing spur gears rotating at different velocity due to differing gear ratio. A gear [1] [2] or gearwheel [3] [4] [5] is a rotating machine part typically used to transmit rotational motion and/or torque by means of a series of teeth that engage with compatible teeth of another gear or other part.
Helix Angle [clarification needed]. In mechanical engineering, a helix angle is the angle between any helix and an axial line on its right, circular cylinder or cone. [1] ...
A gear train or gear set is a machine element of a mechanical system formed by mounting two or more gears on a frame such that the teeth of the gears engage.. Gear teeth are designed to ensure the pitch circles of engaging gears roll on each other without slipping, providing a smooth transmission of rotation from one gear to the next. [2]
Pressure angles. Pressure angle in relation to gear teeth, also known as the angle of obliquity, [1] is the angle between the tooth face and the gear wheel tangent. It is more precisely the angle at a pitch point between the line of pressure (which is normal to the tooth surface) and the plane tangent to the pitch surface.
The involute gear profile, sometimes credited to Leonhard Euler, [1] was a fundamental advance in machine design, since unlike with other gear systems, the tooth profile of an involute gear depends only on the number of teeth on the gear, pressure angle, and pitch. That is, a gear's profile does not depend on the gear it mates with.