Search results
Results from the WOW.Com Content Network
A spectral line may be observed either as an emission line or an absorption line. Which type of line is observed depends on the type of material and its temperature relative to another emission source. An absorption line is produced when photons from a hot, broad spectrum source pass through a cooler material.
Spectral line shape or spectral line profile describes the form of an electromagnetic spectrum in the vicinity of a spectral line – a region of stronger or weaker intensity in the spectrum. Ideal line shapes include Lorentzian , Gaussian and Voigt functions, whose parameters are the line position, maximum height and half-width. [ 1 ]
The hydrogen line, 21 centimeter line, or H I line [a] is a spectral line that is created by a change in the energy state of solitary, electrically neutral hydrogen atoms. It is produced by a spin -flip transition, which means the direction of the electron's spin is reversed relative to the spin of the proton.
In physics, one thinks of a spectral line from two viewpoints. An emission line is formed when an atom or molecule makes a transition from a particular discrete energy level E 2 of an atom, to a lower energy level E 1, emitting a photon of a particular energy and wavelength. A spectrum of many such photons will show an emission spike at the ...
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series.It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state (n = 1), where n is the principal quantum number.
The homogeneous broadened emission line will have a Lorentzian profile (i.e. will be best fitted by a Lorentzian function), while the inhomogeneously broadened emission will have a Gaussian profile. One or more phenomena may be present at the same time, but if one has a wider fluctuation, it will be the one responsible for the character of the ...
Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28 nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level.
Different velocities of the emitting (or absorbing) particles result in different Doppler shifts, the cumulative effect of which is the emission (absorption) line broadening. [1] This resulting line profile is known as a Doppler profile. A particular case is the thermal Doppler broadening due to the thermal motion of the particles.