Search results
Results from the WOW.Com Content Network
Photons are massless particles that can move no faster than the speed of light measured in vacuum. The photon belongs to the class of boson particles. As with other elementary particles, photons are best explained by quantum mechanics and exhibit wave–particle duality, their behavior featuring properties of both waves and particles. [2]
When cosmic rays enter the Earth's atmosphere, they collide with atoms and molecules, mainly oxygen and nitrogen. The interaction produces a cascade of lighter particles, a so-called air shower secondary radiation that rains down, including x-rays, protons, alpha particles, pions, muons, electrons, neutrinos, and neutrons. [68]
When broadband very low frequency (VLF) waves propagate the radiation belts, the electrons exit the radiation belt and "precipitate" (or travel) into the ionosphere (a region of Earth's atmosphere) where the electrons will collide with ions. [2] Electron precipitation is regularly linked to ozone depletion. It is often caused by lightning strikes.
In the late 17th century, Sir Isaac Newton had advocated that light was corpuscular (particulate), but Christiaan Huygens took an opposing wave description. While Newton had favored a particle approach, he was the first to attempt to reconcile both wave and particle theories of light, and the only one in his time to consider both, thereby anticipating modern wave-particle duality.
Since most of the ionized atoms are due to the secondary beta particles, photons are indirectly ionizing radiation. [10] Radiated photons are called gamma rays if they are produced by a nuclear reaction, subatomic particle decay, or radioactive decay within the nucleus. They are called x-rays if produced outside the nucleus. The generic term ...
The source of Einstein's proposal that light was composed of particles (or could act as particles in some circumstances) was an experimental anomaly not explained by the wave theory: the photoelectric effect, in which light striking a metal surface ejected electrons from the surface, causing an electric current to flow across an applied voltage.
The quantization of the electromagnetic field is a procedure in physics turning Maxwell's classical electromagnetic waves into particles called photons. Photons are massless particles of definite energy, definite momentum, and definite spin. To explain the photoelectric effect, Albert Einstein assumed heuristically in 1905 that an ...
As the photons entered the cloud, their energy excited atoms along their path, causing them to lose speed. Inside the cloud medium, the photons dispersively coupled to strongly interacting atoms in highly excited Rydberg states. This caused the photons to behave as massive particles with strong mutual attraction (photon molecules).