Search results
Results from the WOW.Com Content Network
Whenever the rate of change f′ of a quantity f is proportional to the displacement of an object, the quantity f is a linear function of the object's absement. For example, when the fuel flow rate is proportional to the position of the throttle lever, then the total amount of fuel consumed is proportional to the lever's absement.
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
The formula provides a natural generalization of the Coulomb's law for cases where the source charge is moving: = [′ ′ + ′ (′ ′) + ′] = ′ Here, and are the electric and magnetic fields respectively, is the electric charge, is the vacuum permittivity (electric field constant) and is the speed of light.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
Bernoulli's equation: p constant is the total pressure at a point on a streamline + ... P.A. Tipler, G. Mosca (2008). Physics for Scientists and Engineers: ...
This is an example of an equation that holds off shell, since it is true for any fields configuration regardless of whether it respects the equations of motion (in this case, the Euler–Lagrange equation given above). However, we can derive an on shell equation by simply substituting the Euler–Lagrange equation:
b →J/ψK − p channel, which represents the decay of the bottom lambda baryon (Λ 0 b) into a J/ψ meson (J/ψ), a kaon (K −) and a proton (p). The results showed that sometimes, instead of decaying directly into mesons and baryons, the Λ 0 b decayed via intermediate pentaquark states. The two states, named P + c (4380) and P +
It is also possible to introduce a term in the equation in order to take also three-body forces into account. The Faddeev equations are the most often used non-perturbative formulations of the quantum-mechanical three-body problem. Unlike the three body problem in classical mechanics, the quantum three body problem is uniformly soluble.