Search results
Results from the WOW.Com Content Network
One slug is a mass equal to 32.17405 lb (14.59390 kg) based on standard gravity, the international foot, and the avoirdupois pound. [3] In other words, at the Earth's surface (in standard gravity), an object with a mass of 1 slug weighs approximately 32.17405 lbf or 143.1173 N. [4] [5]
≡ 1 ⁄ 7000 lb av ≡ 64.798 91 mg: grave: gv grave was the original name of the kilogram ≡ 1 kg hundredweight (long) long cwt or cwt ≡ 112 lb av = 50.802 345 44 kg: hundredweight (short); cental: sh cwt ≡ 100 lb av = 45.359 237 kg: hyl; metric slug: ≡ 1 kgf / 1 m/s 2 = 9.806 65 kg: kilogram (kilogramme) kg ≈ mass of the prototype ...
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
Units for other physical quantities are derived from this set as needed. In English Engineering Units, the pound-mass and the pound-force are distinct base units, and Newton's Second Law of Motion takes the form = where is the acceleration in ft/s 2 and g c = 32.174 lb·ft/(lbf·s 2).
The pound or pound-mass is a unit of mass used in both the British imperial and United States customary systems of measurement.Various definitions have been used; the most common today is the international avoirdupois pound, which is legally defined as exactly 0.453 592 37 kilograms, and which is divided into 16 avoirdupois ounces. [1]
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
The SI unit of impulse is the newton second (N⋅s), and the dimensionally equivalent unit of momentum is the kilogram metre per second (kg⋅m/s). The corresponding English engineering unit is the pound -second (lbf⋅s), and in the British Gravitational System , the unit is the slug -foot per second (slug⋅ft/s).
The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —