Search results
Results from the WOW.Com Content Network
Elastomers and shape memory metals such as Nitinol exhibit large elastic deformation ranges, as does rubber. However, elasticity is nonlinear in these materials. Normal metals, ceramics and most crystals show linear elasticity and a smaller elastic range. Linear elastic deformation is governed by Hooke's law, which states:
The elastic behavior of objects that undergo finite deformations has been described using a number of models, such as Cauchy elastic material models, Hypoelastic material models, and Hyperelastic material models. The deformation gradient (F) is the primary deformation measure used in finite strain theory.
Elastic constants are specific parameters that quantify the stiffness of a material in response to applied stresses and are fundamental in defining the elastic properties of materials. These constants form the elements of the stiffness matrix in tensor notation, which relates stress to strain through linear equations in anisotropic materials.
Elastic energy is the mechanical potential energy stored in the configuration of a material or physical system as it is subjected to elastic deformation by work performed upon it. Elastic energy occurs when objects are impermanently compressed, stretched or generally deformed in any manner.
Contact mechanics is the study of the deformation of solids that touch each other at one or more points. [1] [2] A central distinction in contact mechanics is between stresses acting perpendicular to the contacting bodies' surfaces (known as normal stress) and frictional stresses acting tangentially between the surfaces (shear stress).
In physics and continuum mechanics, deformation is the change in the shape or size of an object. It has dimension of length with SI unit of metre (m). It is quantified as the residual displacement of particles in a non-rigid body, from an initial configuration to a final configuration, excluding the body's average translation and rotation (its rigid transformation). [1]
Anelasticity is a property of materials that describes their behaviour when undergoing deformation. Its formal definition does not include the physical or atomistic mechanisms but still interprets the anelastic behaviour as a manifestation of internal relaxation processes. It is a behaviour differing (usually very slightly) from elastic behaviour.
This region of deformation is known as the linearly elastic region. It is most common for analysts in solid mechanics to use linear material models, due to ease of computation. However, real materials often exhibit non-linear behavior. As new materials are used and old ones are pushed to their limits, non-linear material models are becoming ...