Search results
Results from the WOW.Com Content Network
As can be seen from Fig. 1, these problems involve solving the triangle NAB given one angle, α 1 for the direct problem and λ 12 = λ 2 − λ 1 for the inverse problem, and its two adjacent sides. For a sphere the solutions to these problems are simple exercises in spherical trigonometry , whose solution is given by formulas for solving a ...
The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length). The angle A (respectively, B and C ) may be regarded either as the dihedral angle between the two planes that intersect the sphere at the vertex A , or, equivalently, as the angle between the tangents of the great circle arcs where they ...
The center of the osculating sphere is offset from the center of the ellipsoid, but is at the center of curvature for the given point on the ellipsoid surface. This concept aids the interpretation of terrestrial and planetary radio occultation refraction measurements and in some navigation and surveillance applications. [17] [18]
The sphere packing problem is the three-dimensional version of a class of ball-packing problems in arbitrary dimensions. In two dimensions, the equivalent problem is packing circles on a plane. In one dimension it is packing line segments into a linear universe. [10]
In geodesy, a reference ellipsoid is a mathematically defined surface that approximates the geoid, which is the truer, imperfect figure of the Earth, or other planetary body, as opposed to a perfect, smooth, and unaltered sphere, which factors in the undulations of the bodies' gravity due to variations in the composition and density of the ...
In geometry, many uniform tilings on sphere, euclidean plane, and hyperbolic plane can be made by Wythoff construction within a fundamental triangle, (p q r), defined by internal angles as π/p, π/q, and π/r. Special cases are right triangles (p q 2).
Geodesic polyhedra are a good approximation to a sphere for many purposes, and appear in many different contexts. The most well-known may be the geodesic domes, hemispherical architectural structures designed by Buckminster Fuller, which geodesic polyhedra are named after. Geodesic grids used in geodesy also have the geometry of geodesic polyhedra.
TRIZ flowchart Contradiction matrix 40 principles of invention, principles based on TRIZ. One tool which evolved as an extension of TRIZ was a contradiction matrix. [14] The ideal final result (IFR) is the ultimate solution of a problem when the desired result is achieved by itself.