Search results
Results from the WOW.Com Content Network
The useful minimum bounding circle of three points is defined either by the circumcircle (where three points are on the minimum bounding circle) or by the two points of the longest side of the triangle (where the two points define a diameter of the circle). It is common to confuse the minimum bounding circle with the circumcircle.
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
The nine-point center is the circumcenter of the medial triangle of the given triangle, the circumcenter of the orthic triangle of the given triangle, and the circumcenter of the Euler triangle. More generally it is the circumcenter of any triangle defined from three of the nine points defining the nine-point circle. [citation needed]
The recursion terminates when P is empty, and a solution can be found from the points in R: for 0 or 1 points the solution is trivial, for 2 points the minimal circle has its center at the midpoint between the two points, and for 3 points the circle is the circumcircle of the triangle described by the points.
Qalculate! supports common mathematical functions and operations, multiple bases, autocompletion, complex numbers, infinite numbers, arrays and matrices, variables, mathematical and physical constants, user-defined functions, symbolic derivation and integration, solving of equations involving unknowns, uncertainty propagation using interval arithmetic, plotting using Gnuplot, unit and currency ...
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
The point P is the inversion point of Q; the polar is the line through P that is perpendicular to the line containing O, P and Q. If point R is the inverse of point P then the lines perpendicular to the line PR through one of the points is the polar of the other point (the pole). Poles and polars have several useful properties:
Solving for x yields x = R 2 + r 2 − r 4 R 2 + r 2 . {\displaystyle x={\sqrt {R^{2}+r^{2}-r{\sqrt {4R^{2}+r^{2}}}}}.} Fuss's theorem, which is the analog of Euler's theorem for triangles for bicentric quadrilaterals, says that if a quadrilateral is bicentric, then its two associated circles are related according to the above equations.