Search results
Results from the WOW.Com Content Network
The magnitude of Earth's magnetic field at its surface ranges from 25 to 65 μT (0.25 to 0.65 G). [3] As an approximation, it is represented by a field of a magnetic dipole currently tilted at an angle of about 11° with respect to Earth's rotational axis, as if there were an enormous bar magnet placed at that angle through the center of Earth.
The coolest of these, 2MASS J10475385+2124234 with a temperature of 800-900 K, retains a magnetic field stronger than 1.7 kG, making it some 3000 times stronger than the Earth's magnetic field. [18] Radio observations also suggest that their magnetic fields periodically change their orientation, similar to the Sun during the solar cycle .
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
In 2014, a magnetic field around HD 209458 b was inferred from the way hydrogen was evaporating from the planet. [20] [21] In 2019, the strength of the surface magnetic fields of 4 hot Jupiters were estimated and ranged between 20 and 120 gauss compared to Jupiter's surface magnetic field of 4.3 gauss.
The sun’s powerful magnetic field has long puzzled scientists. A new study suggests the source of its magnetic field is nearer the surface than first thought.
The sun’s intense magnetic energy is the source of solar flares and eruptions of plasma known as coronal mass ejections. When directed toward Earth, they can create stunning auroras but also ...
The solar magnetic field was first detected in 1908 by George Ellery Hale, when he showed observationally that sunspots had strong, bipolar magnetic fields. [1] With these observations, Hale also noted that the majority of sunspot groups within the same northern or southern solar hemisphere shared the same leading polarity and that this pattern reversed across the equator.
The sun’s looping magnetic field lines, which form a tangled web of structures more complex than those on Earth, are difficult to study directly. To grasp what’s going on, scientists create ...