enow.com Web Search

  1. Ad

    related to: how to identify a parallelogram with one pair of lines given two points

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate conic - Wikipedia

    en.wikipedia.org/wiki/Degenerate_conic

    Given four points in general linear position (no three collinear; in particular, no two coincident), there are exactly three pairs of lines (degenerate conics) passing through them, which will in general be intersecting, unless the points form a trapezoid (one pair is parallel) or a parallelogram (two pairs are parallel). Given three points, if ...

  3. Parallelogram - Wikipedia

    en.wikipedia.org/wiki/Parallelogram

    The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A l (half linear dimensions yields quarter area), and the area of the parallelogram is A ...

  4. Sylvester–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Sylvester–Gallai_theorem

    The Sylvester–Gallai theorem was posed as a problem by J. J. Sylvester (). Kelly () suggests that Sylvester may have been motivated by a related phenomenon in algebraic geometry, in which the inflection points of a cubic curve in the complex projective plane form a configuration of nine points and twelve lines (the Hesse configuration) in which each line determined by two of the points ...

  5. Parallel projection - Wikipedia

    en.wikipedia.org/wiki/Parallel_projection

    Parallel lines are mapped on parallel lines, or on a pair of points (if they are parallel to ). The ratio of the length of two line segments on a line stays unchanged. As a special case, midpoints are mapped on midpoints. The length of a line segment parallel to the projection plane remains unchanged. The length of any line segment is shortened ...

  6. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    the distance between the two lines can be found by locating two points (one on each line) that lie on a common perpendicular to the parallel lines and calculating the distance between them. Since the lines have slope m, a common perpendicular would have slope −1/m and we can take the line with equation y = −x/m as a common perpendicular ...

  7. Theorem of the gnomon - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_the_gnomon

    The proof of the theorem is straightforward if one considers the areas of the main parallelogram and the two inner parallelograms around its diagonal: first, the difference between the main parallelogram and the two inner parallelograms is exactly equal to the combined area of the two complements;

  8. Translational symmetry - Wikipedia

    en.wikipedia.org/wiki/Translational_symmetry

    One parallelogram fully defines the whole object. Without further symmetry, this parallelogram is a fundamental domain. The vectors a and b can be represented by complex numbers. For two given lattice points, equivalence of choices of a third point to generate a lattice shape is represented by the modular group, see lattice (group).

  9. Trapezoid - Wikipedia

    en.wikipedia.org/wiki/Trapezoid

    As a consequence the two legs are also of equal length and it has reflection symmetry. This is possible for acute trapezoids or right trapezoids (as rectangles). A parallelogram is (under the inclusive definition) a trapezoid with two pairs of parallel sides. A parallelogram has central 2-fold rotational symmetry (or point reflection symmetry ...

  1. Ad

    related to: how to identify a parallelogram with one pair of lines given two points