enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of sound - Wikipedia

    en.wikipedia.org/wiki/Speed_of_sound

    The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. More simply, the speed of sound is how fast vibrations travel. At 20 °C (68 °F), the speed of sound in air, is about 343 m/s (1,125 ft/s; 1,235 km/h; 767 mph; 667 kn), or 1 km in 2.91 s or one mile in 4.69 s.

  3. Mach number - Wikipedia

    en.wikipedia.org/wiki/Mach_number

    c is the speed of sound in the medium, which in air varies with the square root of the thermodynamic temperature. By definition, at Mach 1, the local flow velocity u is equal to the speed of sound. At Mach 0.65, u is 65% of the speed of sound (subsonic), and, at Mach 1.35, u is 35% faster than the speed of sound (supersonic).

  4. Speeds of sound of the elements - Wikipedia

    en.wikipedia.org/wiki/Speeds_of_sound_of_the...

    The speed of sound in any chemical element in the fluid phase has one temperature-dependent value. In the solid phase, different types of sound wave may be propagated, each with its own speed: among these types of wave are longitudinal (as in fluids), transversal, and (along a surface or plate) extensional. [1]

  5. Shock wave - Wikipedia

    en.wikipedia.org/wiki/Shock_wave

    In physics, a shock wave (also spelled shockwave), or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium, but is characterized by an abrupt, nearly discontinuous, change in pressure , temperature , and ...

  6. Sound - Wikipedia

    en.wikipedia.org/wiki/Sound

    The speed of sound depends on the medium the waves pass through, and is a fundamental property of the material. The first significant effort towards measurement of the speed of sound was made by Isaac Newton. He believed the speed of sound in a particular substance was equal to the square root of the pressure acting on it divided by its density:

  7. Isentropic nozzle flow - Wikipedia

    en.wikipedia.org/wiki/Isentropic_Nozzle_Flow

    is the local Mach number of the gas; is the speed of the gas (m/s) is the local speed of sound through the gas (m/s) is the ratio of specific heats of the gas; is the pressure of the gas (Pa) is the density of the gas (kg/m 3)

  8. Nonlinear acoustics - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_acoustics

    A sound wave propagates through a material as a localized pressure change. Increasing the pressure of a gas or fluid increases its local temperature. The local speed of sound in a compressible material increases with temperature; as a result, the wave travels faster during the high pressure phase of the oscillation than during the lower pressure phase.

  9. Acoustic wave equation - Wikipedia

    en.wikipedia.org/wiki/Acoustic_wave_equation

    where is the Laplace operator, is the acoustic pressure (the local deviation from the ambient pressure), and is the speed of sound. A similar looking wave equation but for the vector field particle velocity is given by