Search results
Results from the WOW.Com Content Network
Thus, the energy added to the system per gas particle kinetic degree of freedom is =. Therefore, the kinetic energy per kelvin of one mole of monatomic ideal gas ( D = 3) is K = D 2 k B N A = 3 2 R , {\displaystyle K={\frac {D}{2}}k_{\text{B}}N_{\text{A}}={\frac {3}{2}}R,} where N A {\displaystyle N_{\text{A}}} is the Avogadro constant , and R ...
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
The general equation can then be written as [6] = + + (),. where the "force" term corresponds to the forces exerted on the particles by an external influence (not by the particles themselves), the "diff" term represents the diffusion of particles, and "coll" is the collision term – accounting for the forces acting between particles in collisions.
for the average kinetic energy per particle, the equipartition theorem can be used to derive the ideal gas law from classical mechanics. [6] If q = (q x, q y, q z) and p = (p x, p y, p z) denote the position vector and momentum of a particle in the gas, and F is the net force on that particle, then
In other words, the configuration of particle A in state 1 and particle B in state 2 is different from the case in which particle B is in state 1 and particle A is in state 2. This assumption leads to the proper (Boltzmann) statistics of particles in the energy states, but yields non-physical results for the entropy, as embodied in the Gibbs ...
This dependence on microscopic variables is the central point of statistical mechanics. With a model of the microscopic constituents of a system, one can calculate the microstate energies, and thus the partition function, which will then allow us to calculate all the other thermodynamic properties of the system.
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.
The ideal gas model has been explored in both the Newtonian dynamics (as in "kinetic theory") and in quantum mechanics (as a "gas in a box"). The ideal gas model has also been used to model the behavior of electrons in a metal (in the Drude model and the free electron model), and it is one of the most important models in statistical mechanics.