Search results
Results from the WOW.Com Content Network
Word2vec can use either of two model architectures to produce these distributed representations of words: continuous bag of words (CBOW) or continuously sliding skip-gram. In both architectures, word2vec considers both individual words and a sliding context window as it iterates over the corpus.
Two of the passes involve a sequence of separate, small transpositions (which can be performed efficiently out of place using a small buffer) and one involves an in-place d×d square transposition of / blocks (which is efficient since the blocks being moved are large and consecutive, and the cycles are of length at most 2). This is further ...
Identifying the in-place algorithms with L has some interesting implications; for example, it means that there is a (rather complex) in-place algorithm to determine whether a path exists between two nodes in an undirected graph, [3] a problem that requires O(n) extra space using typical algorithms such as depth-first search (a visited bit for ...
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Strings in Python can be concatenated by "adding" them (with the same operator as for adding integers and floats), e.g. "spam" + "eggs" returns "spameggs". If strings contain numbers, they are added as strings rather than integers, e.g. "2" + "2" returns "22". Python has various string literals:
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
In array languages, operations are generalized to apply to both scalars and arrays. Thus, a+b expresses the sum of two scalars if a and b are scalars, or the sum of two arrays if they are arrays. An array language simplifies programming but possibly at a cost known as the abstraction penalty.
The softmax function, also known as softargmax [1]: 184 or normalized exponential function, [2]: 198 converts a vector of K real numbers into a probability distribution of K possible outcomes. It is a generalization of the logistic function to multiple dimensions, and is used in multinomial logistic regression .