Search results
Results from the WOW.Com Content Network
Ciguatoxin is produced by Gambierdiscus toxicus, a type of dinoflagellate. The phenomenon occurs in the Caribbean Sea, Hawaii, and coastal Central America. The toxin usually accumulates in the skin, head, viscera, and roe of big reef fish like grouper, wrasse, triggerfish, lionfish, and amberjack.
Ciguatoxin 1 or CTX-1 is a toxic chemical compound, the most common and potent type in the group of ciguatoxins. It is a large molecule consisting of polycyclic polyethers that can be found in certain types of fish in the Pacific Ocean. The compound is produced by Dinoflagellates Gambierdiscus toxicus and is passed on through the food chain by ...
Ciguatoxin has no taste or smell, and cannot be destroyed by conventional cooking. [2] There is no specific treatment for ciguatera fish poisoning once it occurs. [2] Mannitol may be considered, but the evidence supporting its use is not very strong. [1] Gabapentin or amitriptyline may be used to treat some of the symptoms. [2]
Depolarization, a deviation from a neuron's resting membrane potential towards its threshold potential, increases the likelihood of an action potential and normally occurs with the influx of positively charged sodium (Na +) ions into the postsynaptic cell through ion channels activated by neurotransmitter binding.
An action potential occurs when the membrane potential of a specific cell rapidly rises and falls. [1] This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of excitable cells, which include animal cells like neurons and muscle cells, as well as some plant cells.
Mathematically, rheobase is equivalent to half the current that needs to be applied for the duration of chronaxie, which is a strength-duration time constant that corresponds to the duration of time that elicits a response when the nerve is stimulated at twice rheobasic strength. [3]
Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Action potential in a neuron, showing depolarization, in which the cell's internal charge becomes less negative (more positive), and repolarization, where the internal charge returns to a more negative value.
If the postsynaptic cell is sufficiently depolarized, an action potential will occur. For example, in low-threshold spikes depolarizations by the T-type calcium channel occur at low, negative, membrane depolarizations resulting in the neuron reaching the threshold. Action potentials are not graded; they are an all-or-none response.