Search results
Results from the WOW.Com Content Network
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
A term is a constant or the product of a constant and one or more variables. Some examples include ,,, The constant of the product is called the coefficient. Terms that are either constants or have the same variables raised to the same powers are called like terms. If there are like terms in an expression, one can simplify the expression by ...
2. In geometry and linear algebra, denotes the cross product. 3. In set theory and category theory, denotes the Cartesian product and the direct product. See also × in § Set theory. · 1. Denotes multiplication and is read as times; for example, 3 ⋅ 2. 2. In geometry and linear algebra, denotes the dot product. 3.
In its simplest form, if a number had a plus sign on one side and a multiplication sign on the other side, the multiplication acts first. If we were to express this idea using symbols of grouping, the factors in a product. Example: 2+3×4 = 2 +(3×4)=2+12=14.
For example, taking the statement x + 1 = 0, if x is substituted with 1, this implies 1 + 1 = 2 = 0, which is false, which implies that if x + 1 = 0 then x cannot be 1. If x and y are integers, rationals, or real numbers, then xy = 0 implies x = 0 or y = 0. Consider abc = 0. Then, substituting a for x and bc for y, we learn a = 0 or bc = 0.
It is a polynomial in which no variable occurs to a power of or higher; that is, each monomial is a constant times a product of distinct variables. For example f ( x , y , z ) = 3 x y + 2.5 y − 7 z {\displaystyle f(x,y,z)=3xy+2.5y-7z} is a multilinear polynomial of degree 2 {\displaystyle 2} (because of the monomial 3 x y {\displaystyle 3xy ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In algebra, it is a notation to resolve ambiguity (for instance, "b times 2" may be written as b⋅2, to avoid being confused with a value called b 2). This notation is used wherever multiplication should be written explicitly, such as in " ab = a ⋅2 for b = 2 "; this usage is also seen in English-language texts.