Search results
Results from the WOW.Com Content Network
To find consistent initial values it is often necessary to consider the derivatives of some of the component functions of the DAE. The highest order of a derivative that is necessary for this process is called the differentiation index. The equations derived in computing the index and consistent initial values may also be of use in the ...
Toggle the table of contents. ... Printable version; In other projects Wikidata item; ... Differential geometry: General Laguerre: 2 ...
The order of the differential equation is the highest order of derivative of the unknown function that appears in the differential equation. For example, an equation containing only first-order derivatives is a first-order differential equation, an equation containing the second-order derivative is a second-order differential equation, and so on.
English: This pictorial periodic table is colorful, boring, and packed with information. In addition to the element's name, symbol, and atomic number, each element box has a drawing of one of the element's main human uses or natural occurrences. The table is color-coded to show the chemical groupings.
Elements and operations of the algebra can generally be associated with geometric meaning. The members of the algebra may be decomposed by grade (as in the formalism of differential forms) and the (geometric) product of a vector with a k-vector decomposes into a (k − 1)-vector and a (k + 1)-vector.
In mathematics, Euler's differential equation is a first-order non-linear ordinary differential equation, named after Leonhard Euler. It is given by: [ 1 ] d y d x + a 0 + a 1 y + a 2 y 2 + a 3 y 3 + a 4 y 4 a 0 + a 1 x + a 2 x 2 + a 3 x 3 + a 4 x 4 = 0 {\displaystyle {\frac {dy}{dx}}+{\frac {\sqrt {a_{0}+a_{1}y+a_{2}y^{2}+a_{3}y^{3}+a_{4}y^{4 ...
Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.
In multivariate calculus, a differential or differential form is said to be exact or perfect (exact differential), as contrasted with an inexact differential, if it is equal to the general differential for some differentiable function in an orthogonal coordinate system (hence is a multivariable function whose variables are independent, as they are always expected to be when treated in ...