enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    This polynomial is further reduced to = + + which is shown in blue and yields a zero of −5. The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were ...

  3. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    Thus solving a polynomial system over a number field is reduced to solving another system over the rational numbers. For example, if a system contains 2 {\displaystyle {\sqrt {2}}} , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing 2 {\displaystyle {\sqrt {2}}} by r 2 in the other equations.

  4. Elimination theory - Wikipedia

    en.wikipedia.org/wiki/Elimination_theory

    The field of elimination theory was motivated by the need of methods for solving systems of polynomial equations. One of the first results was Bézout's theorem, which bounds the number of solutions (in the case of two polynomials in two variables at Bézout time).

  5. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    For example, to solve a system of n equations for n unknowns by performing row operations on the matrix until it is in echelon form, and then solving for each unknown in reverse order, requires n(n + 1)/2 divisions, (2n 3 + 3n 2 − 5n)/6 multiplications, and (2n 3 + 3n 2 − 5n)/6 subtractions, [10] for a total of approximately 2n 3 /3 operations.

  6. Multi-homogeneous Bézout theorem - Wikipedia

    en.wikipedia.org/wiki/Multi-homogeneous_Bézout...

    In the case of a system of n polynomial equations in n unknowns, the problem is solved by Bézout's theorem, which asserts that, if the number of complex solutions is finite, their number is bounded by the product of the degrees of the polynomials.

  7. Triangular decomposition - Wikipedia

    en.wikipedia.org/wiki/Triangular_decomposition

    When the purpose is to describe the solution set of S in the algebraic closure of its coefficient field, those simpler systems are regular chains. If the coefficients of the polynomial systems S 1, ..., S e are real numbers, then the real solutions of S can be obtained by a triangular decomposition into regular semi-algebraic systems. In both ...

  8. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The main computer algebra systems (Maple, Mathematica, SageMath, PARI/GP) have each a variant of this method as the default algorithm for the real roots of a polynomial. The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in ...

  9. Linear–quadratic regulator - Wikipedia

    en.wikipedia.org/wiki/Linear–quadratic_regulator

    If the state equation is polynomial then the problem is known as the polynomial-quadratic regulator (PQR). Again, the Al'Brekht algorithm can be applied to reduce this problem to a large linear one which can be solved with a generalization of the Bartels-Stewart algorithm; this is feasible provided that the degree of the polynomial is not too high.

  1. Related searches solve this polynomial problem based on two parts of system of law that affect

    system of polynomial equationspolynomial equation formula
    list of polynomial equations