Search results
Results from the WOW.Com Content Network
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...
The central corneal power is the second important factor in the calculation formula. To simplify the calculation, the cornea is assumed to be a thin spherical lens with a fixed anterior to posterior corneal curvature ratio and an index of refraction of 1.3375. Central corneal power can be measured by keratometry or corneal topography.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
As one special case, it can be used to prove that if n is a positive integer then 4 divides () if and only if n is not a power of 2. It follows from Legendre's formula that the p -adic exponential function has radius of convergence p − 1 / ( p − 1 ) {\displaystyle p^{-1/(p-1)}} .
Thus performance of a beam in tension will depend on Young's modulus divided by ... as the fourth power of ... ±6.5 2.2 ±0.4 0.135 ±0.025 S ...
2.0 × 10 6 W tech: peak power output of GE's standard wind turbine 2.4 × 10 6 W tech: peak power output of a Princess Coronation class steam locomotive (approx 3.3K EDHP on test) (1937) 2.5 × 10 6 W biomed: peak power output of a blue whale [citation needed] 3 × 10 6 W tech: mechanical power output of a diesel locomotive: 4.4 × 10 6 W
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is: