Search results
Results from the WOW.Com Content Network
In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.
Finding the real roots of a polynomial with real coefficients is a problem that has received much attention since the beginning of 19th century, and is still an active domain of research. Most root-finding algorithms can find some real roots, but cannot certify having found all the roots.
For polynomials, there are specialized algorithms that are more efficient and may provide all roots or all real roots; see Polynomial root-finding and Real-root isolation. Some polynomial, including all those of degree no greater than 4, can have all their roots expressed algebraically in terms of their coefficients; see Solution in radicals.
The theorem is used to find all rational roots of a polynomial, if any. It gives a finite number of possible fractions which can be checked to see if they are roots. If a rational root x = r is found, a linear polynomial ( x – r ) can be factored out of the polynomial using polynomial long division , resulting in a polynomial of lower degree ...
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative polynomial root-finding method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the ...
If the coefficients are real and the polynomial has odd degree, then it must have at least one real root. To find this, use a real value of p 0 as the initial guess and make q 0 and r 0, etc., complex conjugate pairs. Then the iteration will preserve these properties; that is, p n will always be real, and q n and r n, etc., will always be ...
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
If x is a simple root of the polynomial (), then Laguerre's method converges cubically whenever the initial guess, (), is close enough to the root . On the other hand, when x 1 {\displaystyle x_{1}} is a multiple root convergence is merely linear, with the penalty of calculating values for the polynomial and its first and second derivatives at ...