Search results
Results from the WOW.Com Content Network
According to the definition of a parabola as a conic section, the boundary of this pink cross-section EPD is a parabola. A cross-section perpendicular to the axis of the cone passes through the vertex P of the parabola. This cross-section is circular, but appears elliptical when viewed obliquely, as is shown in the diagram.
The point (,) is the vertex of the parabola. Pencil of confocal parabolas From the definition of a parabola , for any point P {\displaystyle P} not on the x -axis, there is a unique parabola with focus at the origin opening to the right and a unique parabola with focus at the origin opening to the left, intersecting orthogonally at the point P ...
It is also possible to describe all conic sections in terms of a single focus and a single directrix, which is a given line not containing the focus. A conic is defined as the locus of points for each of which the distance to the focus divided by the distance to the directrix is a fixed positive constant, called the eccentricity e.
A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...
Working principle View to the East from the parabola center One of the 63 heliostats. The principle used is the concentration of rays by reflecting mirrors (9,600 of them). The solar rays are picked up by a first set of steerable mirrors located on the slope, and then sent to a second series of mirrors (the concentrators), placed in a parabola and eventually converging on a circular target, 40 ...
In this position, the hyperbolic paraboloid opens downward along the x-axis and upward along the y-axis (that is, the parabola in the plane x = 0 opens upward and the parabola in the plane y = 0 opens downward). Any paraboloid (elliptic or hyperbolic) is a translation surface, as it can be generated by a moving parabola directed by a second ...
An oblique projection of a focus-balanced parabolic reflector. It is sometimes useful if the centre of mass of a reflector dish coincides with its focus.This allows it to be easily turned so it can be aimed at a moving source of light, such as the Sun in the sky, while its focus, where the target is located, is stationary.
In this simple approximation, the trajectory takes the shape of a parabola. Generally when determining trajectories, it may be necessary to account for nonuniform gravitational forces and air resistance (drag and aerodynamics). This is the focus of the discipline of ballistics.