Search results
Results from the WOW.Com Content Network
A rendering of the magnetic field lines of the magnetosphere of the Earth. In astronomy and planetary science, a magnetosphere is a region of space surrounding an astronomical object in which charged particles are affected by that object's magnetic field. [1] [2] It is created by a celestial body with an active interior dynamo.
The magnetosphere is defined by the extent of Earth's magnetic field in space or geospace. It extends above the ionosphere , several tens of thousands of kilometres into space , protecting Earth from the charged particles of the solar wind and cosmic rays that would otherwise strip away the upper atmosphere, including the ozone layer that ...
The diagram is thoughtfully put together and I learned something from it, not finding myself distracted by crops or labels or pixelation. Plus I'm a sucker for diagrams.--Efbrazil 05:04, 23 May 2013 (UTC) Support I agree that it would make the earth too small if the elements were not cut off the way they are.
Artistic representation of Earth's magnetosphere. The plasma sheet is highlighted in yellow. In the magnetosphere, the plasma sheet is a sheet-like region of denser (0.3-0.5 ions/cm 3 versus 0.01-0.02 in the lobes) [citation needed] hot plasma and lower magnetic field located on the magnetotail and near the equatorial plane, between the magnetosphere's north and south lobes.
(This simple definition assumes a noon-midnight plane of symmetry, but closed fields lacking such symmetry also must have cusps, by the fixed point theorem.) The amount of solar wind energy and plasma entering the actual magnetosphere depends on how far it departs from such a "closed" configuration, i.e. the extent to which Interplanetary ...
Schematic view of the different current systems which shape the Earth's magnetosphere. Earth's ring current is responsible for shielding the lower latitudes of the Earth from magnetospheric electric fields. It therefore has a large effect on the electrodynamics of geomagnetic storms.
Like Earth's, Mercury's magnetic field is tilted, [9] [23] meaning that the magnetic poles are not located in the same area as the geographic poles. As a result of the north-south asymmetry in Mercury's internal magnetic field, the geometry of magnetic field lines is different in Mercury's north and south polar regions. [ 24 ]
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.