enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of set identities and relations - Wikipedia

    en.wikipedia.org/wiki/List_of_set_identities_and...

    This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.

  3. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  4. Commutative property - Wikipedia

    en.wikipedia.org/wiki/Commutative_property

    The Egyptians used the commutative property of multiplication to simplify computing products. [7] [8] Euclid is known to have assumed the commutative property of multiplication in his book Elements. [9] Formal uses of the commutative property arose in the late 18th and early 19th centuries, when mathematicians began to work on a theory of ...

  5. Abelian group - Wikipedia

    en.wikipedia.org/wiki/Abelian_group

    To qualify as an abelian group, the set and operation, (,), must satisfy four requirements known as the abelian group axioms (some authors include in the axioms some properties that belong to the definition of an operation: namely that the operation is defined for any ordered pair of elements of A, that the result is well-defined, and that the ...

  6. Set (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Set_(mathematics)

    A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...

  7. Monoid - Wikipedia

    en.wikipedia.org/wiki/Monoid

    Given a set A, the set of subsets of A is a commutative monoid under intersection (identity element is A itself). Given a set A, the set of subsets of A is a commutative monoid under union (identity element is the empty set). Generalizing the previous example, every bounded semilattice is an idempotent commutative monoid.

  8. Special classes of semigroups - Wikipedia

    en.wikipedia.org/wiki/Special_classes_of_semigroups

    For example, the structure of the sets of idempotents of regular semigroups is completely known. Structure descriptions are presented in terms of better known types of semigroups. The best known type of semigroup is the group. A (necessarily incomplete) list of various special classes of semigroups is presented below.

  9. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    A commutative ring is a set that is equipped with an addition and multiplication operation and satisfies all the axioms of a field, except for the existence of multiplicative inverses a −1. [26] For example, the integers Z form a commutative ring, but not a field: the reciprocal of an integer n is not itself an integer, unless n = ±1.