enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  3. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch supports various sub-types of Tensors. [29] Note that the term "tensor" here does not carry the same meaning as tensor in mathematics or physics. The meaning of the word in machine learning is only superficially related to its original meaning as a certain kind of object in linear algebra. Tensors in PyTorch are simply multi-dimensional ...

  4. Tensor contraction - Wikipedia

    en.wikipedia.org/wiki/Tensor_contraction

    In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the canonical pairing of a vector space and its dual.In components, it is expressed as a sum of products of scalar components of the tensor(s) caused by applying the summation convention to a pair of dummy indices that are bound to each other in an expression.

  5. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The work of Élie Cartan made differential forms one of the basic kinds of tensors used in mathematics, and Hassler Whitney popularized the tensor product. [ 16 ] From about the 1920s onwards, it was realised that tensors play a basic role in algebraic topology (for example in the Künneth theorem ). [ 22 ]

  6. Category:Tensors - Wikipedia

    en.wikipedia.org/wiki/Category:Tensors

    In mathematics, a tensor is a certain kind of geometrical entity and array concept. It generalizes the concepts of scalar, vector and linear operator, in a way that is independent of any chosen frame of reference. For example, doing rotations over axis does not affect at all the properties of tensors, if a transformation law is followed.

  7. Tensor algebra - Wikipedia

    en.wikipedia.org/wiki/Tensor_algebra

    In mathematics, the tensor algebra of a vector space V, denoted T(V) or T • (V), is the algebra of tensors on V (of any rank) with multiplication being the tensor product.It is the free algebra on V, in the sense of being left adjoint to the forgetful functor from algebras to vector spaces: it is the "most general" algebra containing V, in the sense of the corresponding universal property ...

  8. Tensor operator - Wikipedia

    en.wikipedia.org/wiki/Tensor_operator

    In quantum mechanics, physical observables that are scalars, vectors, and tensors, must be represented by scalar, vector, and tensor operators, respectively. Whether something is a scalar, vector, or tensor depends on how it is viewed by two observers whose coordinate frames are related to each other by a rotation.

  9. Tensor rank decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_rank_decomposition

    For order-2 tensors, i.e., matrices, rank and border rank always coincide, however, for tensors of order they may differ. Border tensors were first studied in the context of fast approximate matrix multiplication algorithms by Bini, Lotti, and Romani in 1980. [15] A classic example of a border tensor is the rank-3 tensor