Search results
Results from the WOW.Com Content Network
Images with pixel annotations for eight object categories: fish (vertebrates), reefs (invertebrates), aquatic plants, wrecks/ruins, human divers, robots, and sea-floor. 1,635 Images Segmentation 2020 [174] Md Jahidul Islam et al. LIACI Dataset Images have been collected during underwater ship inspections and annotated by human domain experts.
CSV and PDF Natural language processing, QnA 2021 The Atticus Project: Vietnamese Image Captioning Dataset (UIT-ViIC) Vietnamese Image Captioning Dataset 19,250 captions for 3,850 images CSV and PDF Natural language processing, Computer vision 2020 [112] Lam et al. Vietnamese Names annotated with Genders (UIT-ViNames)
The images are in many cases chosen to represent natural or typical images that a class of processing techniques would need to deal with. Other test images are chosen because they present a range of challenges to image reconstruction algorithms, such as the reproduction of fine detail and textures, sharp transitions and edges, and uniform regions.
ImageNet-21k contains 14,197,122 images divided into 21,841 classes. Some papers round this up and name it ImageNet-22k. [29] The full ImageNet-21k was released in Fall of 2011, as fall11_whole.tar. There is no official train-validation-test split for ImageNet-21k. Some classes contain only 1-10 samples, while others contain thousands. [29]
Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s, at Bell Laboratories, the Jet Propulsion Laboratory, Massachusetts Institute of Technology, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone ...
General scheme of content-based image retrieval. Content-based image retrieval, also known as query by image content and content-based visual information retrieval (CBVIR), is the application of computer vision techniques to the image retrieval problem, that is, the problem of searching for digital images in large databases (see this survey [1] for a scientific overview of the CBIR field).
Python Imaging Library is a free and open-source additional library for the Python programming language that adds support for opening, manipulating, and saving many different image file formats. It is available for Windows, Mac OS X and Linux. The latest version of PIL is 1.1.7, was released in September 2009 and supports Python 1.5.2–2.7. [3]
Digital image processing is the application of signal processing techniques to the domain of images — two-dimensional signals such as photographs or video.Image processing does typically involve filtering or enhancing an image using various types of functions in addition to other techniques to extract information from the images.