Search results
Results from the WOW.Com Content Network
Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]
Nanoconcrete (also spelled "nano concrete"' or "nano-concrete") is a class of materials that contains Portland cement particles that are no greater than 100 μm [89] and particles of silica no greater than 500 μm, which fill voids that would otherwise occur in normal concrete, thereby substantially increasing the material's strength. [90]
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
High-strength concrete has a compressive strength greater than 40 MPa (6000 psi). In the UK, BS EN 206-1 [3] defines High strength concrete as concrete with a compressive strength class higher than C50/60. High-strength concrete is made by lowering the water-cement (W/C) ratio to 0.35 or lower.
Air entrainment in concrete is the intentional creation of tiny air bubbles in a batch by adding an air entraining agent during mixing. A form of surfactant (a surface-active substance that in the instance reduces the surface tension between water and solids) it allows bubbles of a desired size to form.
Semi-detached houses for the middle class began to be planned systematically in late 18th-century Georgian architecture, as a suburban compromise between the terraced houses close to the city centre, and the detached "villas" further out, where land was cheaper. There are occasional examples of such houses in town centres going back to medieval ...
CLSM consists of a mixture of Portland cement, water, aggregate and sometimes fly ash.Unlike ordinary concrete, CLSM has much lower strength. The strength of CLSM is less than 1,200 pounds per square inch (8.3 MPa), while ordinary concrete has strengths exceeding 3,000 pounds per square inch (21 MPa) [citation needed].
Flow table with a grip and a hinge, 70 centimetres (28 in) square. In the American version of this test, the table is 10 inches (25 cm) diameter per ASTM C 230.; Abrams cone, open at the top and at the bottom - 30 centimetres (12 in) high, 17 centimetres (6.7 in) top diameter, 25 centimetres (9.8 in) base diameter.