enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Statistical finance - Wikipedia

    en.wikipedia.org/wiki/Statistical_finance

    Statistical finance [1] is the application of econophysics [2] to financial markets.Instead of the normative roots of finance, it uses a positivist framework. It includes exemplars from statistical physics with an emphasis on emergent or collective properties of financial markets.

  3. Econophysics - Wikipedia

    en.wikipedia.org/wiki/Econophysics

    Econophysics is a non-orthodox (in economics) interdisciplinary research field, applying theories and methods originally developed by physicists in order to solve problems in economics, usually those including uncertainty or stochastic processes and nonlinear dynamics.

  4. Quantum finance - Wikipedia

    en.wikipedia.org/wiki/Quantum_Finance

    Quantum finance is an interdisciplinary research field, applying theories and methods developed by quantum physicists and economists in order to solve problems in finance. It is a branch of econophysics. Today several financial applications like fraud detection, portfolio optimization, product recommendation and stock price prediction are being ...

  5. Statistical mechanics - Wikipedia

    en.wikipedia.org/wiki/Statistical_mechanics

    In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, [1] chemistry, neuroscience, [2] computer science, [3] [4] information theory [5] and ...

  6. Mathematical finance - Wikipedia

    en.wikipedia.org/wiki/Mathematical_finance

    Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling in the financial field. In general, there exist two separate branches of finance that require advanced quantitative techniques: derivatives pricing on the one hand, and risk and portfolio ...

  7. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...

  8. Virtual work - Wikipedia

    en.wikipedia.org/wiki/Virtual_work

    If the principle of virtual work for applied forces is used on individual particles of a rigid body, the principle can be generalized for a rigid body: When a rigid body that is in equilibrium is subject to virtual compatible displacements, the total virtual work of all external forces is zero; and conversely, if the total virtual work of all ...

  9. Udwadia–Kalaba formulation - Wikipedia

    en.wikipedia.org/wiki/Udwadia–Kalaba_formulation

    In classical mechanics, the Udwadia–Kalaba formulation is a method for deriving the equations of motion of a constrained mechanical system. [1] [2] The method was first described by Anatolii Fedorovich Vereshchagin [3] [4] for the particular case of robotic arms, and later generalized to all mechanical systems by Firdaus E. Udwadia and Robert E. Kalaba in 1992. [5]