Search results
Results from the WOW.Com Content Network
These two examples show that an electrical potential and a chemical potential can both give the same result: A redistribution of the chemical species. Therefore, it makes sense to combine them into a single "potential", the electrochemical potential , which can directly give the net redistribution taking both into account.
Thus the chemical potential of HA decreases and the sum of the chemical potentials of H + and A − increases. When the sums of chemical potential of reactants and products are equal the system is at equilibrium and there is no tendency for the reaction to proceed in either the forward or backward direction.
A Latimer diagram of a chemical element is a summary of the standard electrode potential data of that element. This type of diagram is named after Wendell Mitchell Latimer (1893–1955), an American chemist.
In this article, the terms conduction-band referenced Fermi level or internal chemical potential are used to refer to ζ. Example of variations in conduction band edge E C in a band diagram of GaAs/AlGaAs heterojunction-based high-electron-mobility transistor.
An atom or ion that gives up an electron to another atom or ion has its oxidation state increase, and the recipient of the negatively charged electron has its oxidation state decrease. For example, when atomic sodium reacts with atomic chlorine, sodium donates one electron and attains an oxidation state of +1. Chlorine accepts the electron and ...
Diagram of ion concentrations and charge across a semi-permeable cellular membrane. An electrochemical gradient is a gradient of electrochemical potential, usually for an ion that can move across a membrane. The gradient consists of two parts: The chemical gradient, or difference in solute concentration across a membrane.
The formal potential is thus the reversible potential of an electrode at equilibrium immersed in a solution where reactants and products are at unit concentration. [4] If any small incremental change of potential causes a change in the direction of the reaction, i.e. from reduction to oxidation or vice versa , the system is close to equilibrium ...
As chemical reactions proceed in a primary cell, the battery uses up the chemicals that generate the power; when they are gone, the battery stops producing electricity. Circuit diagram of a primary cell showing difference in cell potential, and flow of electrons through a resistor.