enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

  3. Quantization of the electromagnetic field - Wikipedia

    en.wikipedia.org/wiki/Quantization_of_the...

    These equations say respectively: a photon has zero rest mass; the photon energy is hν = hc|k| (k is the wave vector, c is speed of light); its electromagnetic momentum is ħk [ħ = h/(2π)]; the polarization μ = ±1 is the eigenvalue of the z-component of the photon spin.

  4. Photon energy - Wikipedia

    en.wikipedia.org/wiki/Photon_energy

    Photon energy is directly proportional to frequency. [1] = where is energy (joules in the SI system) [2] is the Planck constant; is frequency [2] This equation is known as the Planck relation. Additionally, using equation f = c/λ, = where

  5. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  6. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    where ν is the frequency of the wave, λ is the wavelength, ω = 2πν is the angular frequency of the wave, and v p is the phase velocity of the wave. The dependence of the wavenumber on the frequency (or more commonly the frequency on the wavenumber) is known as a dispersion relation.

  7. Compton wavelength - Wikipedia

    en.wikipedia.org/wiki/Compton_wavelength

    The reduced Compton wavelength is a natural representation of mass on the quantum scale and is used in equations that pertain to inertial mass, such as the Klein–Gordon and Schrödinger's equations. [2]: 18–22 Equations that pertain to the wavelengths of photons interacting with mass use the non-reduced Compton wavelength.

  8. Radiation pressure - Wikipedia

    en.wikipedia.org/wiki/Radiation_pressure

    Note, however, that in order to account for the net effect of solar radiation on a spacecraft for instance, one would need to consider the total force (in the direction away from the Sun) given by the preceding equation, rather than just the component normal to the surface that we identify as "pressure".

  9. Larmor formula - Wikipedia

    en.wikipedia.org/wiki/Larmor_formula

    For a particle whose velocity is small relative to the speed of light (i.e., nonrelativistic), the total power that the particle radiates (when considered as a point charge) can be calculated by the Larmor formula: = (˙) = = = = where ˙ or is the proper acceleration, is the charge, and is the speed of light. [2]