Search results
Results from the WOW.Com Content Network
The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.
The Brezina equation. The Reynolds number can be defined for several different situations where a fluid is in relative motion to a surface. [n 1] These definitions generally include the fluid properties of density and viscosity, plus a velocity and a characteristic length or characteristic dimension (L in the above equation). This dimension is ...
In case of 1-D Reynolds equation several analytical or semi-analytical solutions are available. In 1916 Martin obtained a closed form solution [5] for a minimum film thickness and pressure for a rigid cylinder and plane geometry. This solution is not accurate for the cases when the elastic deformation of the surfaces contributes considerably to ...
In fluid dynamics, the Reynolds stress is the component of the total stress tensor in a fluid obtained from the averaging operation over the Navier–Stokes equations to account for turbulent fluctuations in fluid momentum.
Therefore, the computational cost of DNS is very high, even at low Reynolds numbers. For the Reynolds numbers encountered in most industrial applications, the computational resources required by a DNS would exceed the capacity of the most powerful computers currently available. However, direct numerical simulation is a useful tool in ...
The Reynolds-averaged Navier–Stokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]
Continuous vortex sheet approximation by panel method. Roll-up of a vortex sheet due to an initial sinusoidal perturbation. Note that the integral in the above equation is a Cauchy principal value integral. The initial condition for a flat vortex sheet with constant strength is (,) =. The flat vortex sheet is an equilibrium solution.
Reynolds Stress equation models rely on the Reynolds Stress Transport equation. The equation for the transport of kinematic Reynolds stress = ′ ′ = / is [3] = + + + Rate of change of + Transport of by convection = Transport of by diffusion + Rate of production of + Transport of due to turbulent pressure-strain interactions + Transport of due to rotation + Rate of dissipation of .