Search results
Results from the WOW.Com Content Network
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
Apart from the trivial case of the first order square, most-perfect magic squares are all of order 4n. In their book, Kathleen Ollerenshaw and David S. Brée give a method of construction and enumeration of all most-perfect magic squares. They also show that there is a one-to-one correspondence between reversible squares and most-perfect magic ...
Lastly the four rhomboids that form elongated crosses also give the magic sum: 23+1+9+24+8, 15+1+17+20+12, 14+1+18+13+19, 7+1+25+22+10. Such squares with 1 at the center cell are also called God's magic squares in Islamic amulet design, where the center cell is either left blank or filled with God's name. [26]
[7] [8] [9] It is widely believed, [10] but not proven, that no odd perfect numbers exist; numerous restrictive conditions have been proven, [10] including a lower bound of 10 1500. [11] The following is a list of all 52 currently known (as of January 2025) Mersenne primes and corresponding perfect numbers, along with their exponents p.
Square number 16 as sum of gnomons. In mathematics, a square number or perfect square is an integer that is the square of an integer; [1] in other words, it is the product of some integer with itself. For example, 9 is a square number, since it equals 3 2 and can be written as 3 × 3.
The palindromic prime 10 150006 + 7 426 247 × 10 75 000 + 1 is a 10-happy prime with 150 007 digits because the many 0s do not contribute to the sum of squared digits, and 1 2 + 7 2 + 4 2 + 2 2 + 6 2 + 2 2 + 4 2 + 7 2 + 1 2 = 176, which is a 10-happy number. Paul Jobling discovered the prime in 2005.
Super Bowl Squares are the second most popular office sports betting tradition in the United States (No. 1: March Madness brackets), maybe because the outcome is based entirely on luck. Here's how ...
The only perfect 10-squares published in any language to date have been constructed in Latin and English, and perfect 11-squares have been created in Latin as well. [11] Perfect 9-squares have been constructed in French, [12] while perfect squares of at least order 8 have been constructed in Italian and Spanish. [13]