Search results
Results from the WOW.Com Content Network
In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, =. [ 1 ] [ 2 ] [ 3 ] For univariate distributions , the precision matrix degenerates into a scalar precision , defined as the reciprocal of the variance , p = 1 σ 2 {\displaystyle p={\frac {1}{\sigma ^{2}}}} .
In a classification task, the precision for a class is the number of true positives (i.e. the number of items correctly labelled as belonging to the positive class) divided by the total number of elements labelled as belonging to the positive class (i.e. the sum of true positives and false positives, which are items incorrectly labelled as belonging to the class).
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
This case arises frequently in statistics; for example, in the distribution of the vector of residuals in the ordinary least squares regression. The X i {\displaystyle X_{i}} are in general not independent; they can be seen as the result of applying the matrix A {\displaystyle {\boldsymbol {A}}} to a collection of independent Gaussian variables ...
For example, in medicine sensitivity and specificity are often used, while in computer science precision and recall are preferred. An important distinction is between metrics that are independent of the prevalence or skew (how often each class occurs in the population), and metrics that depend on the prevalence – both types are useful, but ...
Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
Again, additional low-dimensional structure is needed for successful covariance matrix estimation in high dimensions. Examples of such structures include sparsity, low rankness and bandedness. Similar remarks apply when estimating an inverse covariance matrix (precision matrix).