Ad
related to: time resolution vs nanosecond laser sensor for sale near me map
Search results
Results from the WOW.Com Content Network
If the process under study is slow, then the time resolution can be obtained with a continuous (i.e., not pulsed) probe beam and repeated conventional spectrophotometric techniques. Time-resolved absorption spectroscopy relies on the ability to resolve two physical actions in real time. The shorter the detection time, the better the resolution.
Ultrafast laser spectroscopy is a category of spectroscopic techniques using ultrashort pulse lasers for the study of dynamics on extremely short time scales (attoseconds to nanoseconds). Different methods are used to examine the dynamics of charge carriers, atoms, and molecules.
Plasmonic nanolaser sensors have recently been demonstrated that can detect specific molecules in air and be used for optical biosensors. Molecules can modify the surface of metal nanoparticles and impact the surface recombination velocity of gain medium of a plasmonic nanolaser, which contributes to the sensing mechanism of plasmonic nanolasers.
Laser-ultrasonics uses lasers to generate and detect ultrasonic waves. [1] It is a non-contact technique used to measure materials thickness, detect flaws and carry out materials characterization. The basic components of a laser-ultrasonic system are a generation laser, a detection laser and a detector.
Fluorescence lifetimes can be determined in the time domain by using a pulsed source. When a population of fluorophores is excited by an ultrashort or delta pulse of light, the time-resolved fluorescence will decay exponentially as described above. However, if the excitation pulse or detection response is wide, the measured fluorescence, d(t ...
Frequency-resolved optical gating (FROG) is a general method for measuring the spectral phase of ultrashort laser pulses, which range from subfemtosecond to about a nanosecond in length. Invented in 1991 by Rick Trebino and Daniel J. Kane, FROG was the first technique to solve this problem, which is difficult because, ordinarily, to measure an ...
The time resolution of the observed phenomena is dictated by the time width of the probing pulse (full width at half maximum). All processes that happen on a faster time scale than that are going to be averaged out by the convolution of the probe pulse intensity in time with the intensity of the actual x-ray reflectivity of the sample.
Often there is a trade-off between the temporal resolution of a measurement and its spatial resolution, due to Heisenberg's uncertainty principle.In some contexts, such as particle physics, this trade-off can be attributed to the finite speed of light and the fact that it takes a certain period of time for the photons carrying information to reach the observer.
Ad
related to: time resolution vs nanosecond laser sensor for sale near me map