Search results
Results from the WOW.Com Content Network
The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. [1] It is an intrinsic expansion, so it does not mean that the universe expands "into" anything or that space exists "outside" it.
Adam Riess et al. found that "the distances of the high-redshift SNe Ia were, on average, 10% to 15% further than expected in a low mass density Ω M = 0.2 universe without a cosmological constant". [14] This means that the measured high-redshift distances were too large, compared to nearby ones, for a decelerating universe. [15]
If Ω is less than unity, they are open; and the universe expands forever. However, one can also subsume the spatial curvature and vacuum energy terms into a more general expression for Ω in which case this density parameter equals exactly unity. Then it is a matter of measuring the different components, usually designated by subscripts.
The Alcubierre drive ([alkuˈβjere]) is a speculative warp drive idea according to which a spacecraft could achieve apparent faster-than-light travel by contracting space in front of it and expanding space behind it, under the assumption that a configurable energy-density field lower than that of vacuum (that is, negative mass) could be created.
The Big Crunch is a hypothetical scenario for the ultimate fate of the universe, in which the expansion of the universe eventually reverses and the universe recollapses, ultimately causing the cosmic scale factor to reach absolute zero, an event potentially followed by a reformation of the universe starting with another Big Bang.
To determine the stability of the mass transfer and hence exact fate of the donor star, one needs to take into account how the radius of the donor star and that of its Roche lobe react to the mass loss from the donor; if the star expands faster than its Roche lobe or shrinks less rapidly than its Roche lobe for a prolonged time, mass transfer ...
The cosmological constant is given the symbol Λ, and, considered as a source term in the Einstein field equation, can be viewed as equivalent to a "mass" of empty space, or dark energy. Since this increases with the volume of the universe, the expansion pressure is effectively constant, independent of the scale of the universe, while the other ...
Such recession speeds do not correspond to faster-than-light travel. Many popular accounts attribute the cosmological redshift to the expansion of space. This can be misleading because the expansion of space is only a coordinate choice. The most natural interpretation of the cosmological redshift is that it is a Doppler shift. [94]