enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  3. Generalized Hebbian algorithm - Wikipedia

    en.wikipedia.org/wiki/Generalized_Hebbian_algorithm

    The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...

  4. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  5. Pattern recognition - Wikipedia

    en.wikipedia.org/wiki/Pattern_recognition

    Algorithms for pattern recognition depend on the type of label output, on whether learning is supervised or unsupervised, and on whether the algorithm is statistical or non-statistical in nature. Statistical algorithms can further be categorized as generative or discriminative .

  6. Outline of machine learning - Wikipedia

    en.wikipedia.org/wiki/Outline_of_machine_learning

    ML involves the study and construction of algorithms that can learn from and make predictions on data. [3] These algorithms operate by building a model from a training set of example observations to make data-driven predictions or decisions expressed as outputs, rather than following strictly static program instructions.

  7. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.

  8. Learning classifier system - Wikipedia

    en.wikipedia.org/wiki/Learning_classifier_system

    A step-wise schematic illustrating a generic Michigan-style learning classifier system learning cycle performing supervised learning. Keeping in mind that LCS is a paradigm for genetic-based machine learning rather than a specific method, the following outlines key elements of a generic, modern (i.e. post-XCS) LCS algorithm.

  9. Self-organizing map - Wikipedia

    en.wikipedia.org/wiki/Self-organizing_map

    In the simplest form, it is 1 for all neurons close enough to BMU and 0 for others, but the Gaussian and Mexican-hat [9] functions are common choices, too. Regardless of the functional form, the neighborhood function shrinks with time. [6] At the beginning when the neighborhood is broad, the self-organizing takes place on the global scale.