Search results
Results from the WOW.Com Content Network
The square root of a univariate quadratic function gives rise to one of the four conic sections, almost always either to an ellipse or to a hyperbola. If a > 0 , {\displaystyle a>0,} then the equation y = ± a x 2 + b x + c {\displaystyle y=\pm {\sqrt {ax^{2}+bx+c}}} describes a hyperbola, as can be seen by squaring both sides.
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
The graph of the function f(x) = √x, made up of half a parabola with a vertical directrix. The principal square root function () = (usually just referred to as the "square root function") is a function that maps the set of nonnegative real numbers onto itself.
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...
Quadratic function: Second degree polynomial, graph is a parabola. Cubic function: Third degree polynomial. Quartic function: Fourth degree polynomial. Quintic function: Fifth degree polynomial. Rational functions: A ratio of two polynomials. nth root. Square root: Yields a number whose square is the given one. Cube root: Yields a number whose ...
It is a consequence of the first two equations that r 1 + r 2 is a square root of α and that r 3 + r 4 is the other square root of α. For the same reason, r 1 + r 3 is a square root of β, r 2 + r 4 is the other square root of β, r 1 + r 4 is a square root of γ, r 2 + r 3 is the other square root of γ. Therefore, the numbers r 1, r 2, r 3 ...
The RMS value of a set of values (or a continuous-time waveform) is the square root of the arithmetic mean of the squares of the values, or the square of the function that defines the continuous waveform. In the case of a set of n values {,, …,}, the RMS is