enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Initial value problem - Wikipedia

    en.wikipedia.org/wiki/Initial_value_problem

    Initial value problem. In multivariable calculus, an initial value problem[ a] ( IVP) is an ordinary differential equation together with an initial condition which specifies the value of the unknown function at a given point in the domain. Modeling a system in physics or other sciences frequently amounts to solving an initial value problem.

  3. Euler method - Wikipedia

    en.wikipedia.org/wiki/Euler_method

    The next step is to multiply the above value by the step size , which we take equal to one here: h ⋅ f ( y 0 ) = 1 ⋅ 1 = 1. {\displaystyle h\cdot f(y_{0})=1\cdot 1=1.} Since the step size is the change in t {\displaystyle t} , when we multiply the step size and the slope of the tangent, we get a change in y {\displaystyle y} value.

  4. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    The same illustration for The midpoint method converges faster than the Euler method, as . Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to ...

  5. Trapezoidal rule (differential equations) - Wikipedia

    en.wikipedia.org/wiki/Trapezoidal_rule...

    In numerical analysis and scientific computing, the trapezoidal rule is a numerical method to solve ordinary differential equations derived from the trapezoidal rule for computing integrals. The trapezoidal rule is an implicit second-order method, which can be considered as both a Runge–Kutta method and a linear multistep method .

  6. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    Heun's method. In mathematics and computational science, Heun's method may refer to the improved[ 1] or modified Euler's method (that is, the explicit trapezoidal rule[ 2] ), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given ...

  7. Linear multistep method - Wikipedia

    en.wikipedia.org/wiki/Linear_multistep_method

    Multistep methods use information from the previous steps to calculate the next value. In particular, a linear multistep method uses a linear combination of and to calculate the value of for the desired current step. Thus, a linear multistep method is a method of the form with . The coefficients and determine the method.

  8. Backward Euler method - Wikipedia

    en.wikipedia.org/wiki/Backward_Euler_method

    In numerical analysis and scientific computing, the backward Euler method (or implicit Euler method) is one of the most basic numerical methods for the solution of ordinary differential equations. It is similar to the (standard) Euler method, but differs in that it is an implicit method.

  9. Symbolab - Wikipedia

    en.wikipedia.org/wiki/Symbolab

    Symbolab. Symbolab is an answer engine [ 1] that provides step-by-step solutions to mathematical problems in a range of subjects. [ 2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011. In 2020, the company was acquired by American educational technology website Course Hero ...