enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is not in the poset); on the other hand 2 is a lower bound of the subset of powers of 2, which does not have any upper bound. If the number 0 is included, this will be the greatest element, since this is a ...

  3. Glossary of order theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_order_theory

    The greatest element of a poset P can be called unit or just 1 (if it exists). Another common term for this element is top. It is the infimum of the empty set and the supremum of P. The dual notion is called zero. Up-set. See upper set. Upper bound. An upper bound of a subset X of a poset P is an element b of P, such that x ≤ b, for all x in X.

  4. Poset game - Wikipedia

    en.wikipedia.org/wiki/Poset_game

    denote the poset formed by removing x from P. A poset game on P, played between two players conventionally named Alice and Bob, is as follows: Alice chooses a point x ∈ P; thus replacing P with P x, and then passes the turn to Bob who plays on P x, and passes the turn to Alice. A player loses if it is their turn and there are no points to choose.

  5. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    A nontrivial poset satisfying the descending chain condition is said to have deviation 0. Then, inductively, a poset is said to have deviation at most α (for an ordinal α) if for every descending chain of elements a 0 > a 1 >... all but a finite number of the posets of elements between a n and a n+1 have deviation less than α. The deviation ...

  6. Order dimension - Wikipedia

    en.wikipedia.org/wiki/Order_dimension

    Thus, an equivalent definition of the dimension of a poset P is "the least cardinality of a realizer of P." It can be shown that any nonempty family R of linear extensions is a realizer of a finite partially ordered set P if and only if, for every critical pair ( x , y ) of P , y < i x for some order < i in R .

  7. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.

  8. Fence (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fence_(mathematics)

    An up-down poset Q(a,b) is a generalization of a zigzag poset in which there are a downward orientations for every upward one and b total elements. [5] For instance, Q(2,9) has the elements and relations > > < > > < > >. In this notation, a fence is a partially ordered set of the form Q(1,n).

  9. Complete partial order - Wikipedia

    en.wikipedia.org/wiki/Complete_partial_order

    Let us use the term “deductive system” as a set of sentences closed under consequence (for defining notion of consequence, let us use e.g. Alfred Tarski's algebraic approach [3] [4]). There are interesting theorems that concern a set of deductive systems being a directed-complete partial ordering. [ 5 ]