enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_quadratic...

    Sequential quadratic programming (SQP) is an iterative method for constrained nonlinear optimization which may be considered a quasi-Newton method.SQP methods are used on mathematical problems for which the objective function and the constraints are twice continuously differentiable, but not necessarily convex.

  3. Limited-memory BFGS - Wikipedia

    en.wikipedia.org/wiki/Limited-memory_BFGS

    Since BFGS (and hence L-BFGS) is designed to minimize smooth functions without constraints, the L-BFGS algorithm must be modified to handle functions that include non-differentiable components or constraints. A popular class of modifications are called active-set methods, based on the concept of the active set. The idea is that when restricted ...

  4. Sequential linear-quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Sequential_linear...

    In the EQP phase of SLQP, the search direction of the step is obtained by solving the following equality-constrained quadratic program: + + (,,).. + = + =Note that the term () in the objective functions above may be left out for the minimization problems, since it is constant.

  5. Quadratic programming - Wikipedia

    en.wikipedia.org/wiki/Quadratic_programming

    Quadratic programming (QP) is the process of solving certain mathematical optimization problems involving quadratic functions.Specifically, one seeks to optimize (minimize or maximize) a multivariate quadratic function subject to linear constraints on the variables.

  6. Quadratically constrained quadratic program - Wikipedia

    en.wikipedia.org/wiki/Quadratically_constrained...

    There are two main relaxations of QCQP: using semidefinite programming (SDP), and using the reformulation-linearization technique (RLT). For some classes of QCQP problems (precisely, QCQPs with zero diagonal elements in the data matrices), second-order cone programming (SOCP) and linear programming (LP) relaxations providing the same objective value as the SDP relaxation are available.

  7. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In the SciPy extension to Python, the scipy.optimize.minimize function includes, among other methods, a BFGS implementation. [8] Notable proprietary implementations include: Mathematica includes quasi-Newton solvers. [9] The NAG Library contains several routines [10] for minimizing or maximizing a function [11] which use quasi-Newton algorithms.

  8. Design optimization - Wikipedia

    en.wikipedia.org/wiki/Design_optimization

    Design optimization is an engineering design methodology using a mathematical formulation of a design problem to support selection of the optimal design among many alternatives.

  9. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    However, the overall number of iterations to proposed optimum may be high. Nelder–Mead in n dimensions maintains a set of n + 1 test points arranged as a simplex. It then extrapolates the behavior of the objective function measured at each test point in order to find a new test point and to replace one of the old test points with the new one ...