Search results
Results from the WOW.Com Content Network
The reaction conducted in two steps beginning with the conversion of DMT to the diester dimethyl 1,4-cyclohexanedicarboxylate (DMCD): C 6 H 4 (CO 2 CH 3) 2 + 3 H 2 → C 6 H 10 (CO 2 CH 3) 2. In the second step DMCD is further hydrogenated to CHDM: C 6 H 10 (CO 2 CH 3) 2 + 4 H 2 → C 6 H 10 (CH 2 OH) 2 + 2 CH 3 OH. A copper chromite catalyst ...
The manufacturing process involves reacting cyclohexanedimethanol with epichlorohydrin, using a Lewis acid as catalyst, to form a halohydrin. This is followed by washing with sodium hydroxide in a dehydrochlorination step to form the epoxide rings. [8] The waste products are water and sodium chloride and excess caustic soda.
[1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 Cl 2 or CCl 4). The product is a vicinal dihalide. This type of reaction is a halogenation and an electrophilic addition.
It is a cyclohexane ring functionalized with an alcohol, specifically a hydroxymethyl group. The compound is a colorless liquid, although commercial samples can appear yellow. The compound is a colorless liquid, although commercial samples can appear yellow.
Substrates are broadly limited to methyl ketones and secondary alcohols oxidizable to methyl ketones, such as isopropanol.The only primary alcohol and aldehyde to undergo this reaction are ethanol and acetaldehyde, respectively. 1,3-Diketones such as acetylacetone also undergo this reaction. β-ketoacids such as acetoacetic acid will also give the test upon heating.
1,4-Cyclohexadiene is an organic compound with the formula C 6 H 8. It is a colourless, flammable liquid that is of academic interest as a prototype of a large class of related compounds called terpenoids, an example being γ-terpinene. An isomer of this compound is 1,3-cyclohexadiene.
The bromine electrophile is generated by diatomic bromine or another source such as potassium bromide, which can be oxidized to generate bromine in situ by the peracetic acid. The source of the mercuric ion is mercuric acetate , and this reagent is mixed with peracetic acid in AcOH to provide the oxidizing conditions.
ring-closing metathesis reactions, which also can be used to accomplish a specific type of polymerization; the Ruzicka large ring synthesis, in which two carboxyl groups combine to form a carbonyl group with loss of CO 2 and H 2 O; the Wenker synthesis converting a beta amino alcohol to an aziridine