enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Free-fall time - Wikipedia

    en.wikipedia.org/wiki/Free-fall_time

    The free-fall time is the characteristic time that would take a body to collapse under its own gravitational attraction, if no other forces existed to oppose the collapse.. As such, it plays a fundamental role in setting the timescale for a wide variety of astrophysical processes—from star formation to helioseismology to supernovae—in which gravity plays a dominant ro

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Galileo was the first to demonstrate and then formulate these equations. He used a ramp to study rolling balls, the ramp slowing the acceleration enough to measure the time taken for the ball to roll a known distance. [1] [2] He measured elapsed time with a water clock, using an "extremely accurate balance" to measure the amount of water. [note 1]

  4. Free fall - Wikipedia

    en.wikipedia.org/wiki/Free_fall

    The data is in good agreement with the predicted fall time of /, where h is the height and g is the free-fall acceleration due to gravity. Near the surface of the Earth, an object in free fall in a vacuum will accelerate at approximately 9.8 m/s 2, independent of its mass.

  5. Galileo's law of odd numbers - Wikipedia

    en.wikipedia.org/wiki/Galileo's_law_of_odd_numbers

    In classical mechanics and kinematics, Galileo's law of odd numbers states that the distance covered by a falling object in successive equal time intervals is linearly proportional to the odd numbers. That is, if a body falling from rest covers a certain distance during an arbitrary time interval, it will cover 3, 5, 7, etc. times that distance ...

  6. Paradox of radiation of charged particles in a gravitational ...

    en.wikipedia.org/wiki/Paradox_of_radiation_of...

    Maxwell's equations can be applied relative to an observer in free fall, because free-fall is an inertial frame. So the starting point of considerations is to work in the free-fall frame in a gravitational field—a "falling" observer. In the free-fall frame, Maxwell's equations have their usual, flat-spacetime form for the falling observer.

  7. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    These last three equations can be used as the starting point for the derivation of an equation of motion in General Relativity, instead of assuming that acceleration is zero in free fall. [2] Because the Minkowski tensor is involved here, it becomes necessary to introduce something called the metric tensor in General Relativity.

  8. AOL Mail

    mail.aol.com

    You can find instant answers on our AOL Mail help page. Should you need additional assistance we have experts available around the clock at 800-730-2563. Should you need additional assistance we have experts available around the clock at 800-730-2563.

  9. Introduction to general relativity - Wikipedia

    en.wikipedia.org/wiki/Introduction_to_general...

    In this way, the experiences of an observer in free fall are indistinguishable from those of an observer in deep space, far from any significant source of gravity. Such observers are the privileged ("inertial") observers Einstein described in his theory of special relativity : observers for whom light travels along straight lines at constant speed.